English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية

GroupBy do Pandas

Pandas GroupBy的操作实例

任何groupby操作都会对原始对象进行以下操作:

拆分对象 应用函数 合并结果

在许多情况下,我们将数据分成几组,然后在每个子集上应用一些功能。在Apply功能中,我们可以执行以下操作-

聚合 − 计算汇总统计 transformation − 分组操作 Filtragem − 在某些条件下过滤数据

现在我们创建一个DataFrame对象并对其执行所有操作。

#import the pandas library
 import pandas as pd
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 print(df)

Os resultados da execução são os seguintes:

      Points      Rank      Team      Year
0      876      1   Riders   2014
1      789      2   Riders   2015
2      863      2   Devils   2014
3      673      3   Devils   2015
4      741      3    Kings   2014
5      812      4    kings   2015
6      756      1    Kings   2016
7      788      1    Kings   2017
8      694      2   Riders   2016
9      701      4   Royals   2014
10     804      1   Royals   2015
11     690      2   Riders   2017

将数据分成组

象可以拆分为任何对象。有多种分割对象的方法,例如:

obj.groupby('key') obj.groupby(['key1','key2']) obj.groupby(key,axis=1)

现在我们看看如何将分组对象应用于DataFrame对象

实例

# import the pandas library
 import pandas as pd
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 print(df.groupby('Team'))

Os resultados da execução são os seguintes:

   

查看组

# import the pandas library
 import pandas as pd
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 print(df.groupby('Team').groups)

Os resultados da execução são os seguintes:

   {'Kings': Int64Index([4, 6, 7], dtype='int64'),
 'Devils': Int64Index([2, 3], dtype='int64'),
 'Riders': Int64Index([0, 1, 8, 11], dtype='int64'),
 'Royals': Int64Index([9, 10], dtype='int64'),
 'kings' : Int64Index([5], dtype='int64)}

实例

用多列分组

# import the pandas library
 import pandas as pd
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 print(df.groupby(['Team','Year']).groups)

Os resultados da execução são os seguintes:

   {('Kings', 2014): Int64Index([4], dtype='int64'),
  ('Royals', 2014): Int64Index([9], dtype='int64'),
  ('Riders', 2014): Int64Index([0], dtype='int64'),
  ('Riders', 2015): Int64Index([1], dtype='int64'),
  ('Kings', 2016): Int64Index([6], dtype='int64'),
  ('Riders', 2016): Int64Index([8], dtype='int64'),
  ('Riders', 2017): Int64Index([11], dtype='int64'),
  ('Devils', 2014): Int64Index([2], dtype='int64'),
  ('Devils', 2015): Int64Index([3], dtype='int64'),
  ('kings', 2015): Int64Index([5], dtype='int64'),
  ('Royals', 2015): Int64Index([10], dtype='int64'),
  ('Kings', 2017): Int64Index([7], dtype='int64)}

Traversing groups

With the groupby object, we can iterate over the object similar to itertools.obj

# import the pandas library
 import pandas as pd
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 grouped = df.groupby('Year')
 for name, group in grouped:
    print(name)
    print(group)

Os resultados da execução são os seguintes:

  2014
   Pontos  Classificação     Equipe   Ano
0     876     1   Riders   2014
2     863     2   Devils   2014
4     741     3   Kings    2014
9     701     4   Royals   2014
2015
   Pontos  Classificação     Equipe   Ano
1     789     2   Riders   2015
3     673     3   Devils   2015
5     812     4    kings   2015
10    804     1   Royals   2015
2016
   Pontos  Classificação     Equipe   Ano
6     756     1    Kings   2016
8     694     2   Riders   2016
2017
   Points    Rank        Team        Year
7     788     1   Kings   2017
11    690     2  Riders   2017

By default, the label name of the groupby object is the same as the group name.

Select group p

Using the get_group() method, we can select a group.

# import the pandas library
 import pandas as pd
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 grouped = df.groupby('Year')
 print(grouped.get_group(2014))

Os resultados da execução são os seguintes:

     Points    Rank        Team        Year
0     876     1   Riders    2014
2     863     2   Devils    2014
4     741     3   Kings     2014
9     701     4   Royals    2014

Aggregate

Aggregation functions return an aggregated value for each group. Once a group object is created, several aggregation operations can be performed on the grouped data.

One obvious method is to aggregate using the sum or equivalent agg method.

# import the pandas library
 import pandas as pd
 import numpy as np
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 grouped = df.groupby('Year')
 print(grouped['Points'].agg(np.mean))

Os resultados da execução são os seguintes:

  Year
2014   795.25
2015   769.50
2016   725.00
2017   739.00
Name: Points, dtype: float64

Another way to view the size of each group is to apply the size() function.

import pandas as pd
 import numpy as np
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 Attribute Access in Python Pandas
 grouped = df.groupby('Team')
 print(grouped.agg(np.size))

Os resultados da execução são os seguintes:

       Points    Rank    Year
Team
Devils        2      2      2
Kings         3      3      3
Riders        4      4      4
Royals        2      2      2
kings         1      1      1

Applying multiple aggregation functions at once

With the grouped Series, you can also pass a list or dictionary of functions to aggregate and generate a DataFrame as output-

# import the pandas library
 import pandas as pd
 import numpy as np
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 grouped = df.groupby('Team')
 print(grouped['Points'].agg([np.sum, np.mean, np.std]))

Os resultados da execução são os seguintes:

  Team        sum        mean        std
Devils   1536   768.000000   134.350288
Kings    2285   761.666667    24.006943
Riders   3049   762.250000    88.567771
Royals   1505   752.500000    72.831998
kings     812   812.000000      NaN

transformation

Performing a transformation on groups or columns returns an index, the size of which is the same as the size of the object being grouped. Therefore, the transformation should return a result of the same size as the group block.

# import the pandas library
 import pandas as pd
 import numpy as np
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 grouped = df.groupby('Team')
 score = lambda x: (x - x.mean())) / x.std()*10
 print(grouped.transform(score))

Os resultados da execução são os seguintes:

     Pontos        Classificação      Ano
0   12.843272  -15.000000  -11.618950
1   3.020286     5.000000   -3.872983
2   7.071068    -7.071068   -7.071068
3  -7.071068     7.071068    7.071068
4  -8.608621    11.547005  -10.910895
5        NaN          NaN         NaN
6  -2.360428    -5.773503    2.182179
7  10.969049    -5.773503    8.728716
8  -7.705963     5.000000    3.872983
9  -7.071068     7.071068   -7.071068
10  7.071068    -7.071068    7.071068
11 -8.157595     5.000000   11.618950

Filtragem

Filtragem Filtrar dados com base em condições definidas e retornar um subconjunto de dados. A função filter() é usada para filtrar dados.

 import pandas as pd
 import numpy as np
 ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
    'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
    'Classificação': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
    'Ano': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
    'Pontos': [876,789,863,673,741,812,756,788,694,701,804,690]}}
 df = pd.DataFrame(ipl_data)
 print(df.groupby('Team').filter(lambda x: len(x) >= 3))

Os resultados da execução são os seguintes:

      Pontos  Classificação     Equipe   Ano
0      876     1   Riders   2014
1      789     2   Riders   2015
4      741     3   Kings    2014
6      756     1   Kings    2016
7      788     1   Kings    2017
8      694     2   Riders   2016
11     690     2   Riders   2017